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Syslog

“Syslog is a standard for

apache snort

software that generates

computer message logging. It
mail \ / sshd permits separation of the

named / cond 'messages from the system that

\/ stores them and the software

that reports and analyzes

them.”
Terminal File Other machine
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Syslog — Lttng

« We hooked Syslog Daemon
(by adding 3 tracepoints) to
generate LTTng UST events.

|t makes possible to gather

LT Tng trace events from any
@ application generating syslog

omLTTnguUST entries, without modifying the

/ original application.

LTTng event
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Demo

anache] | snon 1. Syslog — LTTng
2. Snort — Syslog — LTTng
3. PHP - Syslog - LTTng
Syslog
omLTTngUST

/.

LTTng event
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Event Linking data structure
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Multi level information
 \WWe may have different layers of

| trace information
» Linking the different layers

enables a multi-resolution
analysis of the system under

/ Synthetic Events 5 StUdy'

: System Calls : * In this presentation, we discuss
about the data structure.
_
/ Kernel Events « And some real use-cases.
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Integration with the State System

« State system is a more
horizontal indexing structure.

e |t indexes/links the same-
level states of an attribute.

« However, we are looking for a
State System: Horizontal Indexing vertical indexing system.

* To link the information from
different layers.

« But the integration was a MUST.

Linking data structure: Vertical Indexing
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S-Link data structure

* First approach:

e o State system is used to
- | store the abstract events

ol | | - Each state system stores the
: events (intervals) of only one
layer.

l_ "\ » For each event (interval)
=] = - we keep a pointer to
T T . | structure named S-Link.

| Level3 .

TR

LY
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S-Link and S-node

sn0

snl

S-Link
~+ S-linkis an array of the
SN2 sl | same size s-nodes

e Each s-node has k

entries.
« The k+1 th entry is a

- Using this mechanism any
size of linking pointers is

pointer to another s-
SHT | path | time node.
supported.
S-Node
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Example 1: Hierarchy of events

DNS Connection

M\

Socket create Socket Connect DNS Request DNS Response
® ® & &P

ts tl t2 te
sn0
T T
S € sHT2 | key | ts
key |DNS Connection| Pointer to s-node
SHT2 | key tl
SHT1 Interval shT2 | key >
SHT?2

We may also avoid storing the links to the “Obvious

members”.
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Example2: Send & Recelive

p3

Sender | .
\ L * Link the corresponding sending and receiving
\ - nodes (processes, etc).

'y
Y "ﬁ/ » In this approach, the corresponding receiving

SHT| path time” _ _ _
0 node(s) will be stored in the s-link structure.
sn

-Node
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Example3: UST and Kernel Traces
void main() {
0 (); Function calls and kernel traces

.
void f0() {

1"i();

2 ();
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UST and Kernel Traces

Void f0() {
f1 ();
2 ();
-

SECONAVIBW s
main() — fO()

10) |
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UST and Kernel Traces

Void fO() {
f1();
f2 ()
}
main() - fo() - f1() main() - fo() —f2()
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UST and Kernel Traces

void 100 ¢ « One SHT for the each level

mk - Query the kernel SHT, retrieve the

2 (); corresponding system calls and show them
- with the functions together.

main

main() — fO()

main() — fO() - f1()

racing ana monitoring

View 3



Level 3

Level 2

Level 1

Level O

First Approach Overview

P —_—

IO VN

P

P

raw events

Time

The first approach stores everything

 the events and the links.

NN
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Second Approach (Partial)

Level 3 P1

Level 2 P1

[ | | | | |

| I | | |

I | | |

| I I I | | | | | | | | |
level0 P, oo e ocece 000 0000 00 o cmscces oo 0d oo

| | | | | | | | |

| | | | | | | | |

Time
The second approach avoids storing everything!

* |t only stores the important events.
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Second Approach

» The first approach stores all events (of the all levels) and
also the links between them.

« Second approach, however, avoids storing all events and
tries to re-generate them dynamically, on the fly, in the
visualization phase.

* |t stores the events of the highest level completely, but for the
iIntermediate levels, it only stores some (but enough) snapshots.

o |t supports two abstraction types: Data Abstraction (events) and
Visual Abstraction (labels and colors)

- It uses both the labels and colors to encode the view

- It shows all levels in a single view using a zoom-abl
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Highest Level (colors + labels)

download

Colors show the type of operations (File, Netw
System. Wait, etc)
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Level 3

Level 2

Level 1

Level O

Each tree node stores one or more snap

Structure

20

Tracing and monitoring distributed multi-core systems




Improvements

« The duration of a snapshot is set dynamically, based on the
processing time required to generate the abstract events.

» At each snapshot, the important events from the previous
checkpoint to the current one are stored.

« Dynamic trace abstraction is used to re-generate the events

* At each level, label placement techniques are used to show the
best set of events (labels).

 Priority rendering, dynamic aggregation, remove repetitive items, ... .




Algorithm To Fetch

 Traverse the tree to find the snapshots of the
given query range.

« output a list of labels of each level.

* Apply label placement techniques (remove
duplications, perform dynamic aggregation,
apply priority, etc.), and show the labels.
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DNS Connection

socket

connect

poll

sendto

poll |poll

rcv

close

dns{ 2228215963 50125 --> Z22ZE1953I3I0:53)




DNS connection

DNS connectior

socket

DNS Connection

send

rcv

socket

connect

poll

sendto

rcv

poll |poll

dn={ 2228215963 S0125 —->

ZZ22E1953I3I0:53)

close




socket

Snapshots

send
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The View (Level 1)

generate this view from the snapshot structure
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The View (Level 2)

generate this view from the snapshot structure

DNS Connection
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The View (Level 3)

generate this view from trace directly

DNS Connection

socket connect| poll | sendto poll rcv close
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The View

generate these two views from the snapshot structure




Header

Disk File Format

Data Nodes
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Summary

A syslog plugin called omLTTngUST is presented.

 Linking data structure called S-Link data structure and some
real use-cases are presented.

« Two approaches:
* As a plugin to the State System:
- that stores events and the links between them

A solution that does not store all events, and generates
the abstract events dynamically in the visualization step,
using some pre-stored important events.
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Thank you.

Questions?
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Demo
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