Presentation 1: Syslog-->Lttng
Presentation 2: Event Linking
data structure

Naser Ezzati
Yannick Brosseau
Michel Dagenais

Department of Computer and Software Engineering

) Dec 10, 2013
Ecole Polytechnique, Montreal

Syslog

“Syslog is a standard for

apache snort

software that generates

computer message logging. It
mail \ / sshd permits separation of the

named / cond 'messages from the system that

\/ stores them and the software

that reports and analyzes

them.”
Terminal File Other machine

2 Tracing and monitoring distributed multi-core systems

Syslog — Lttng

« We hooked Syslog Daemon
(by adding 3 tracepoints) to
generate LTTng UST events.

|t makes possible to gather

LT Tng trace events from any
@ application generating syslog

omLTTnguUST entries, without modifying the

/ original application.

LTTng event

3 Tracing and monitoring distributed multi-core systems

Demo

anache] | snon 1. Syslog — LTTng
2. Snort — Syslog — LTTng
3. PHP - Syslog - LTTng
Syslog
omLTTngUST

/.

LTTng event

Tracing and monitoring distributed multi-core systems

Event Linking data structure

Tracing and monitoring distributed multi-core systems

Multi level information
 \WWe may have different layers of

| trace information
» Linking the different layers

enables a multi-resolution
analysis of the system under

/ Synthetic Events 5 StUdy'

: System Calls : * In this presentation, we discuss
about the data structure.
_
/ Kernel Events « And some real use-cases.

6 Tracing and monitoring distributed multi-core systems

Integration with the State System

« State system is a more
horizontal indexing structure.

e |t indexes/links the same-
level states of an attribute.

« However, we are looking for a
State System: Horizontal Indexing vertical indexing system.

* To link the information from
different layers.

« But the integration was a MUST.

Linking data structure: Vertical Indexing

7 Tracing and monitoring distributed multi-core systems

S-Link data structure

* First approach:

e o State system is used to
- | store the abstract events

ol | | - Each state system stores the
: events (intervals) of only one
layer.

l_ "\ » For each event (interval)
=] = - we keep a pointer to
T T . | structure named S-Link.

| Level3 .

TR

LY

8 Tracing and monitoring distributed multi-core systems

S-Link and S-node

sn0

snl

S-Link
~+ S-linkis an array of the
SN2 sl | same size s-nodes

e Each s-node has k

entries.
« The k+1 th entry is a

- Using this mechanism any
size of linking pointers is

pointer to another s-
SHT | path | time node.
supported.
S-Node

Tracing and monitoring distributed multi-core systems

Example 1: Hierarchy of events

DNS Connection

M\

Socket create Socket Connect DNS Request DNS Response
® ® & &P

ts tl t2 te
sn0
T T
S € sHT2 | key | ts
key |DNS Connection| Pointer to s-node
SHT2 | key tl
SHT1 Interval shT2 | key >
SHT?2

We may also avoid storing the links to the “Obvious

members”.

10 Tracing and monitoring distributed multi-core systems

Example2: Send & Recelive

p3

Sender | .
\ L * Link the corresponding sending and receiving
\ - nodes (processes, etc).

'y
Y "ﬁ/ » In this approach, the corresponding receiving

SHT| path time” _ _ _
0 node(s) will be stored in the s-link structure.
sn

-Node

11 Tracing and monitoring distributed multi-core systems

Example3: UST and Kernel Traces
void main() {
0 (); Function calls and kernel traces

.
void f0() {

1"i();

2 ();

12 Tracing and monitoring distributed multi-core systems
View 1

UST and Kernel Traces

Void f0() {
f1 ();
2 ();
-

SECONAVIBW s
main() — fO()

10) |

13 Tracing and monitoring distributed multi-core systems
View 2

UST and Kernel Traces

Void fO() {
f1();
f2 ()
}
main() - fo() - f1() main() - fo() —f2()
14 Tracing and monitoring distributed multi-core systems

View 3

UST and Kernel Traces

void 100 ¢ « One SHT for the each level

mk - Query the kernel SHT, retrieve the

2 (); corresponding system calls and show them
- with the functions together.

main

main() — fO()

main() — fO() - f1()

racing ana monitoring

View 3

Level 3

Level 2

Level 1

Level O

First Approach Overview

P —_—

IO VN

P

P

raw events

Time

The first approach stores everything

 the events and the links.

NN

16

Tracing and monitoring distributed multi-core systems

o0

Second Approach (Partial)

Level 3 P1

Level 2 P1

[| | | | |

| I | | |

I | | |

| I I I | | | | | | | | |
level0 P, oo e ocece 000 0000 00 o cmscces oo 0d oo

| | | | | | | | |

| | | | | | | | |

Time
The second approach avoids storing everything!

* |t only stores the important events.

17 Tracing and monitoring distributed multi-core systems

Second Approach

» The first approach stores all events (of the all levels) and
also the links between them.

« Second approach, however, avoids storing all events and
tries to re-generate them dynamically, on the fly, in the
visualization phase.

* |t stores the events of the highest level completely, but for the
iIntermediate levels, it only stores some (but enough) snapshots.

o |t supports two abstraction types: Data Abstraction (events) and
Visual Abstraction (labels and colors)

- It uses both the labels and colors to encode the view

- It shows all levels in a single view using a zoom-abl

18 VIEW. Tracing and monitoring distributed multi-core systems

Highest Level (colors + labels)

download

Colors show the type of operations (File, Netw
System. Wait, etc)

19 Tracing and monitoring distributed multi-core systems

Level 3

Level 2

Level 1

Level O

Each tree node stores one or more snap

Structure

20

Tracing and monitoring distributed multi-core systems

Improvements

« The duration of a snapshot is set dynamically, based on the
processing time required to generate the abstract events.

» At each snapshot, the important events from the previous
checkpoint to the current one are stored.

« Dynamic trace abstraction is used to re-generate the events

* At each level, label placement techniques are used to show the
best set of events (labels).

 Priority rendering, dynamic aggregation, remove repetitive items,

Algorithm To Fetch

 Traverse the tree to find the snapshots of the
given query range.

« output a list of labels of each level.

* Apply label placement techniques (remove
duplications, perform dynamic aggregation,
apply priority, etc.), and show the labels.

22 Tracing and monitoring distributed multi-core systems M

DNS Connection

socket

connect

poll

sendto

poll |poll

rcv

close

dns{ 2228215963 50125 --> Z22ZE1953I3I0:53)

DNS connection

DNS connectior

socket

DNS Connection

send

rcv

socket

connect

poll

sendto

rcv

poll |poll

dn={ 2228215963 S0125 —->

ZZ22E1953I3I0:53)

close

socket

Snapshots

send

25

Tracing and monitoring distributed multi-core systems

DNS connectior

rcv

The View (Level 1)

generate this view from the snapshot structure

26 Tracing and monitoring distributed multi-core systems

The View (Level 2)

generate this view from the snapshot structure

DNS Connection

27 Tracing and monitoring distributed multi-core systems

The View (Level 3)

generate this view from trace directly

DNS Connection

socket connect| poll | sendto poll rcv close

28 Tracing and monitoring distributed multi-core systems

The View

generate these two views from the snapshot structure

Header

Disk File Format

Data Nodes

30

Tracing and monitoring distributed multi-core systems

Summary

A syslog plugin called omLTTngUST is presented.

 Linking data structure called S-Link data structure and some
real use-cases are presented.

« Two approaches:
* As a plugin to the State System:
- that stores events and the links between them

A solution that does not store all events, and generates
the abstract events dynamically in the visualization step,
using some pre-stored important events.

31 Tracing and monitoring distributed multi-core systems

Thank you.

Questions?

32

Tracing and monitoring distributed multi-core systems

Demo

33

Tracing and monitoring distributed multi-core systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

